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Abstract: 

Challenges abound in capturing and processing images under low light 

The reliability and performance of robotic systems are critical in a 

wide range of applications, including manufacturing, healthcare, and 

autonomous exploration. One of the primary challenges in ensuring the 

longevity and safety of robots lies in understanding and mitigating 

failure mechanisms caused by excessive or misapplied forces and 

torques. This study investigates the role of force and torque in robotic 

system failures, examining their influence on mechanical components, 

such as actuators, joints, and structural elements. The background of 

this research is rooted in the increasing complexity of robotic systems, 

where precise control of force and torque is essential for successful 

operation and avoiding catastrophic failures. Historically, robotic 

systems were designed with simple mechanical structures, but as 

robots have evolved to perform more complex tasks, the risk of force 

related failures has grown. Traditional robotic systems often rely on 

predefined thresholds for force and torque limits, but these systems 

lack the flexibility to adapt to changing environmental conditions or 

unexpected interactions, making them prone to failure. The problem 

addressed by this study is the lack of robust methodologies to 

anticipate and prevent force-induced failures, leading to costly repairs, 

downtime, and safety hazards. By analyzing the relationship between 

force, torque, and failure, this research aims to provide insights into 

designing more resilient robotic systems. The significance of this study 

lies in its potential to improve robotic safety, performance, and 

longevity by developing predictive models and real-time monitoring 

systems that prevent failure before it occurs. The findings will also 

contribute to the development of more adaptive and intelligent robots 

that can operate in diverse environments with minimal risk of damage. 

The increasing use of robots in various fields has made understanding 

failure mechanisms in robotic systems a critical area of research. Early 

robots were designed with limited capabilities and operated in 

controlled environments, where the risks associated with force and 

torque were minimal. However, as robots become more autonomous 

and are tasked with handling delicate or unpredictable interactions, the 

need for precision in managing force and torque has become 

paramount. 
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1. INTRODUCTION 

 
1.1 Overview 

Robotic systems are increasingly becoming integral to industries 

such as manufacturing, healthcare, logistics, and autonomous vehicles 

due to their efficiency, precision, and ability to operate in hazardous or 

complex environments. These systems, however, are susceptible to 

failures caused by a variety of factors, including mechanical wear, 

sensor malfunctions, environmental conditions, and operational stress. 

Predicting and preventing such failures is crucial to maintaining the 

 

 

operational reliability of robots and minimizing downtime, which can 

be costly and disruptive. Traditional methods for detecting failures in 

robotic systems often rely on manual inspections, scheduled 

maintenance, or simple threshold-based rule systems that monitor key 

parameters like force, torque, temperature, and speed. While these 

approaches can help identify issues when they occur, they are typically 

reactive rather than proactive. They fail to predict failures in advance, 

often resulting in unplanned downtimes, unnecessary maintenance, or, 

in the worst case, catastrophic failures that could compromise both the 

robot and the surrounding environment. 

1.2 Problem Definition 

In modern robotics, failures such as collisions, obstructions, and 

mechanical malfunctions are significant concerns that can result in 

system downtime, damage to equipment, and safety hazards. 

Predicting these failures before they occur is crucial for improving the 

reliability, safety, and efficiency of robotic systems. Traditional 

approaches to monitoring robotic systems rely on manual inspection 

or periodic maintenance, which can be inefficient and costly. 

Moreover, these methods may not detect all types of failures, 

especially those that are subtle or develop over time. The problem that 

the project addresses is the inability to predict failure events in robotic 

systems in a timely manner. By analyzing sensor data such as force and 

torque measurements, we can identify patterns and correlations that 

precede failure events. However, the challenge lies in accurately 

modeling and predicting these failures using machine learning 

techniques, as the data is often noisy, and failures are relatively rare 

occurrences compared to normal operation. The project aims to 

develop a machine learning-based predictive model that can detect 

various failure mechanisms in robotic systems, such as collisions, 

obstructions, and normal operation, based on sensor data. The goal is 

to use data-driven approaches to anticipate when and why a robot may 

fail, thereby enabling proactive maintenance and reducing the risk of 

unexpected downtimes. 

1.3 Research Motivation 

The motivation behind this research stems from the growing 

dependence on robotic systems in various sectors, such as 

manufacturing, healthcare, and autonomous vehicles. As robots 

become more integral to these industries, the cost of unexpected 

failures increases, not only in terms of repair but also in terms of 

potential damage to other systems and risks to human safety. The 

limited ability to predict these failures in advance presents a major 

challenge. In addition, robots operate in dynamic and often 

unpredictable environments, and relying solely on pre-programmed 

behaviors or manual inspection methods is insufficient for ensuring 

optimal performance and safety. Machine learning techniques offer a 

promising solution by providing the ability to analyze vast amounts of 

sensor data in real time, identify patterns, and predict potential failures 

before they occur. This research is motivated by the need to improve 

the reliability, safety, and efficiency of robotic systems by leveraging 
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data-driven techniques. The project explores the application of 

machine learning algorithms—such as Linear Regression, Random 

Forests, and Gradient Boosting—to predict robotic system failures. 

The research aims to explore how different models perform in 

predicting failure events based on sensor data and to develop a robust 

model that can be used in practical scenarios. 

1.4 Significance 

The significance of the project lies in its potential to revolutionize the 

way robotic systems are maintained and operated. The ability to 

predict failure mechanisms in advance would allow for proactive 

maintenance, reducing unplanned downtime, and preventing costly 

repairs. This can lead to significant savings in terms of both time and 

money for industries that rely heavily on robotic systems, such as 

manufacturing, logistics, healthcare. Moreover, the project contributes 

to the field of robotics by demonstrating the applicability of machine 

learning techniques in failure prediction. By employing data- driven 

approaches, this work can inform the development of smarter, more 

adaptive robotic systems that can not only detect failures but also take 

corrective actions autonomously. In addition, the ability to predict 

failure mechanisms ahead of time improves safety. For example, in 

healthcare or autonomous vehicles, being able to predict and avoid 

system malfunctions is critical in preventing accidents and ensuring 

safe operations. The project also holds significance for the wider field 

of predictive maintenance, where data-driven models are increasingly 

being used to forecast equipment failures across various industries. 

Finally, the project’s results could be applied to the design of more 

reliable and resilient robots, as the insights gained from failure 

predictions can inform the design and testing phases of robotic 

systems, leading to better-performing robots in the long run. 

1.5 Applications 

The applications of the project are vast, especially in industries where 

robotic systems are used for critical tasks. Below are some of the key 

areas where predictive maintenance and failure detection models can 

be applied: 

1. Manufacturing: In automated manufacturing, robots are used for 

tasks such as assembly, welding, and packaging. Predicting failures 

can help prevent production line disruptions, reduce downtime, and 

improve overall efficiency. For example, predicting a robotic arm’s 

failure before it occurs allows for timely intervention, preventing 

delays in production. 

2. Healthcare Robotics: Robots are increasingly used in healthcare 

for surgical procedures, patient care, and rehabilitation. Predicting 

failures in medical robots is crucial for patient safety and the smooth 

operation of healthcare facilities. 

3. Autonomous Vehicles: Autonomous vehicles, including self- 

driving cars and drones, rely heavily on robotic systems. This can be 

especially important in high-stakes environments such as urban areas 

or remote locations. 

4. Logistics and Warehousing: In warehouses and logistics centers, 

robots are used for tasks like sorting, packaging, and inventory 

management. Predicting failures in robotic systems can help ensure 

continuous operations, reduce the need for manual intervention, and 

minimize operational disruptions. 

5. Agriculture: Robots used in precision agriculture, such as 

autonomous tractors and harvesters, can benefit from predictive 

maintenance models to ensure consistent and efficient crop production. 

By predicting component failures before they affect operations, 

farmers can reduce downtime and optimize productivity. 

6. Military and Defence: In defence applications, robotic systems are 

used for tasks such as bomb disposal, reconnaissance, and surveillance. 

Predicting failures in these robots can improve their reliability in 

dangerous environments, ensuring that missions are completed 

without interruption. 

7. Space Exploration: Robots used in space missions, such as rovers 

on Mars, are exposed to extreme conditions. Predicting failure 

mechanisms in these robots can help ensure that they continue 

functioning throughout the mission, avoiding costly and potentially 

mission-critical failures. 

2. LITERATURE SURVEY 

Despite their relatively simple mechanical design, as the research 

group preliminarily reported in [1], harmonic drives are vulnerable to 

a variety of potential failure modes [2]: specific types of wear [3], 

deformation [4], and material fatigue. Factors such as cyclic loading, 

lubrication failures [5], and thermal stress [6] can contribute to the 

degradation of key components over time. Additionally, external 

influences like environmental conditions and improper assembly can 

accelerate the onset of faults, ultimately leading to failure. To address 

these challenges, modern maintenance strategies like predictive 

maintenance [7] and Condition-Based Maintenance (CBM) have 

become essential [8]. Predictive maintenance involves forecasting 

failures based on real-time data, allowing for maintenance actions to 

be performed only when necessary, which reduces both unplanned 

downtime and unnecessary maintenance costs. Similarly, Condition- 

Based Maintenance focuses on continuously monitoring the state of 

the harmonic drive through various sensors and performance metrics. 

Maintenance is triggered when the condition of the drive deviates from 

nominal parameters, ensuring that components are serviced or replaced 

before a failure occurs. 

An advanced extension of these approaches is Prognostics and Health 

Management (PHM) [9], which integrates condition monitoring, 

diagnostics, and prognostics into a unified framework. PHM systems 

not only detect current issues but also predict future failures and 

Remaining Useful Life (RUL) by analyzing the evolution of faults 

within the harmonic drive. The proposed model aims to maximize the 

overall profit from the line. Since the total profit is a function of both 

the production rates and profit per unit, the model tries to maximize 

production rates, while minimizing the energy consumption per unit of 

production. This is essentially where the industry operates – balancing 

the production rate and profit per unit rather than sacrificing one for 

the cost of the other. The existing research in the robotic assembly line 

is mainly related to production rate maximization 

(Müller et al., [10] cycle time minimization Aslan et al., [11] energy 

consumption minimization (Belkharroubi & Yahyaoui [12] line 

efficiency (Janardhanan & Nielsen, 13] line balancing (Gao et al., [14] 

production cost reduction (Albus & Huber, [15] The maximization of 

production rate and minimization of energy consumption subsume 

cycle time reduction and other line efficiencies to a large extent in 

automated assembly lines. Production rate maximization is critical for 

revenue generation and order fulfillment. On the other hand, energy 

efficiency has gained increased importance in recent times due to its 

high cost and its effect on the environmental emissions of the 

organization. However, energy consumption can be lowered 

artificially by reducing the production rate which does not serve the 

organizational objective of order fulfilment. Therefore, this paper 

optimizes the production rate and energy consumption simultaneously. 
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3. PROPOSED METHODOLOGY 

3.1 Overview 

The project focuses on analyzing and predicting failure mechanisms in 

robotic systems using machine learning techniques. The objective is to 

build a predictive model that can identify and classify different failure 

types, such as collisions or obstructions, based on sensor readings and 

operational data such as force and torque. Robots are increasingly 

being used in various industries, and understanding when and why they 

fail is critical for improving their reliability, safety, and performance. 

By leveraging data from the robot's operations (e.g., force, torque, 

velocity), the goal is to predict potential failure events that may occur, 

allowing for proactive maintenance and intervention. 

Key Objectives: 

The figure 3.1.1 shows the breakdown of the proposed system: 

1. Predict Failure Mechanisms: The primary objective is to develop 

a model that can predict different failure scenarios in robotic systems. 

These failures might include collisions, obstructions, or normal 

operation. 

2. Feature Analysis: Analyse sensor data like force, torque, and 

possibly other operational and environmental parameters to determine 

which features have the most predictive power for identifying failure 

types. 

3. Model Development: Use machine learning algorithms such as 

Linear Regression, Random Forest, and Gradient Boosting to develop 

models that can predict failure types based on the input features. 

4. Model Evaluation: Evaluate the performance of the models using 

regression metrics such as Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and R² 

score. This will help determine which model performs best in 

predicting failure mechanisms. 

5. Model Deployment: Once a model is trained and optimized, it can 

be saved and reused of future predictions, making the system scalable 

and efficient. 

 

 

Figure 3.1.1: Proposed system Block Diagram 

3.2 Workflow: 

1. Data Collection: Data is collected from robotic systems, likely 

through sensors that measure force, torque, and potentially other 

physical and environmental parameters. This data is stored in a CSV 

file (Data.csv). 

2. Data Preprocessing: The dataset is first cleaned by handling 

missing values and removing duplicates. The class column, which 

represents different failure types, is mapped to numeric values (e.g., 

normal operation, collision, obstruction). The target variable (Class) is 

separated from the features (independent variables). 

3. Exploratory Data Analysis (EDA): Basic statistical analysis is 

performed to gain insights into the dataset. Metrics such as correlation 

are calculated to identify relationships between features. The 

distribution of the target variable is also examined to check for class 

imbalance, which could affect model performance. 

4. Data Splitting: The dataset is split into training and testing sets 

using a 70/30 ratio. The training set is used to train the model, and the 

testing set is used to evaluate the model’s performance. 

5. Model Selection and Training: Multiple machine learning models 

are trained using the training data: 

• Linear Regression 

• Random Forest Regressor 

• Gradient Boosting Regressor 

Each model is trained on the training data, and after training, the 

models are saved for future use to avoid retraining. 

6. Model Evaluation: After training, the models make predictions on 

the testing set. The performance of each model is evaluated using 

several regression metrics such as MAE, MSE, RMSE, and R² score. 

A scatter plot is generated to visually compare actual vs. predicted 

values, providing an intuitive understanding of model accuracy. 

7. Model Testing on Sample Data: A small random sample of 20 data 

points is extracted from the dataset and used to test the model. The 

predictions for this sample data are saved in a new CSV file for further 

analysis. 

8. Model Selection: Based on the evaluation metrics, the best- 

performing model is selected for deployment. The model can be saved 

and used to make future predictions on new data. 

9. Deployment: The model is saved using the joblib library, which 

allows for easy loading and reuse of the model for future predictions. 

This makes the system scalable, as it avoids retraining the model each 

time new data arrives. 

3.3 Model Building: 

What is Linear Regression? 

Linear Regression is a statistical method used to model the relationship 

between a dependent variable (also called the outcome or target 

variable) and one or more independent variables (also called predictors 

or features). The goal of linear regression is to find the best-fit line that 

minimizes the difference between the predicted values and the actual 

values of the target variable. The equation for simple linear regression 

(with one independent variable) is: 

y=β0+β1x1+β2x2+⋯+βp xp +ϵ 

Where: 

• y is the dependent variable (what you are trying to predict), 

• β0\beta_0 is the y-intercept, 

• β1\beta_1 is the slope of the line (coefficient of the 

independent variable xx), 

• x is the independent variable, and ϵ\epsilon is the error term 

(difference between predicted and actual values). 

Advantages of Linear Regression 

1. Simplicity: Linear regression is simple to understand and 

implement. 

2. Interpretability: The coefficients (β1,β2,…\beta_1, \beta_2, \dots) 

provide meaningful insights into the relationship between the 

independent variables and the dependent variable. For instance, a 

positive coefficient indicates a direct relationship, while a negative 

coefficient indicates an inverse relationship. 
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3. Efficiency: It is computationally efficient, meaning it can process 

large datasets quickly without extensive computational resources. 

4. Extrapolation: Linear regression allows for extrapolation, meaning 

you can predict values outside the range of the observed data, assuming 

the relationship holds. 

5. Foundation for Other Techniques: Linear regression is the 

foundation for many more advanced techniques in machine learning 

and statistics. 

6. Works well with linear relationships: It performs well when the 

relationship between the dependent and independent variables is 

approximately linear. 

Using Linear Regression in Investigating Failure Mechanisms in 

Robotic Systems 

In a robotic system, failure mechanisms often arise from various 

factors like forces, torques, mechanical stresses, and environmental 

influences. Linear regression can be applied in the investigation of 

these mechanisms in several ways, particularly in a project that 

involves studying forces and torques. 

1. Force and Torque as Independent Variables 

• In robotic systems, the forces applied to joints, actuators, or 

other components can significantly affect system 

performance and potential failure. Similarly, torques 

generated by motors or actuators can also influence system 

behaviour. 

• Linear regression can be used to model the relationship 

between these applied forces) and the system's performance 

or failure events (e.g., failure time, wear rate). 

• By collecting data on applied forces and torques during robot 

operation, you can use linear regression to analyse how 

changes in these variables influence the likelihood or rate of 

failure. 

2. Predicting Failure Based on Force and Torque 

• Linear regression can be used to predict when a robot might 

fail, given the historical data on forces and torques applied 

to various parts of the system. The model can generate a 

predictive equation that estimates failure or degradation 

based on these inputs. 

• For example, you can predict the failure time or the extent 

of wear on a robotic arm based on the forces and torques it 

experiences during its operation. 

3. Understanding Failure Mechanisms. 

• In robotics, failure mechanisms like wear, fatigue, or 

material breakdown often occur due to repetitive forces and 

torques. Linear regression can help identify the most 

significant contributors to failure by analysing the impact of 

different forces and torques on the failure rate. 

• By running multiple regression analyses, you can isolate 

which factors (e.g., torque on a specific joint or force applied 

to a motor) are most closely correlated with failure. This 

insight can help engineers design more robust systems that 

mitigate these failure risks. 

4. Optimization of Robot Design. 

• By using linear regression to understand how different 

parameters (like forces or torques) influence failure, 

engineers can optimize robotic designs. 

• For instance, if a particular joint or actuator is found to fail 

more frequently due to excessive force, the design can be 

adjusted to handle higher loads or be reinforced for better 

durability. 

• The analysis can also help in selecting materials or adjusting 

tolerances to minimize failure. 

5. Real-Time Monitoring and Maintenance. 

• Linear regression models can be deployed in real-time 

monitoring systems to predict the health of a robotic system 

during operation. By continuously measuring the forces and 

torques being applied, the model can forecast potential 

failures before they occur, enabling preemptive maintenance 

or adjustments. 

4. EXPERIMENTAL ANALYSIS 

4.1 Implementation Description: The code is designed to perform 

regression analysis on a dataset, train multiple machine learning 

models, evaluate their performance, and save the trained models for 

future use. Below is a step-by-step description of the code's workflow: 

1. Data Loading and Exploration 

• The code begins by loading a dataset from a CSV file using 

the pandas library. It then performs various exploratory data 

analysis (EDA) steps such as checking for missing values, 

finding duplicates, and calculating correlations between 

numeric features. 

• Basic dataset statistics are computed to give an overview of 

the data's structure and distribution. 

• The code checks the unique values in the target column 

(class) and maps them to numeric values using a pre-defined 

dictionary. This step is essential for transforming categorical 

target values into a format suitable for regression. 

2. Data Processing 

• The target column (class) is replaced with mapped numeric 

values, and the original class column is dropped. The new 

target column (Class) becomes the dependent variable for 

prediction. 

• The features (independent variables) are separated from the 

target column, and the dataset is split into training and 

testing sets. This split ensures that the models are trained on 

one portion of the data and evaluated on another to assess 

their generalization ability. 

3. Model Training and Evaluation 

• The code supports four types of regression models: Linear 
Regression, Random Forest Regressor, and Gradient 
Boosting Regressor. 

• For each model, the code checks if a pre-trained model exists 
(stored as a .pkl file). If the model is available, it is loaded, 
and predictions are made on the test set. If not, the model is 

trained using the training data, and the newly trained model 
is saved for future use. 

• After training or loading each model, predictions are made 
on the test set, and the model’s performance is evaluated 
using several regression metrics, including Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), and the R² score. These metrics help 

assess the model's accuracy and fit to the data. 

• A scatter plot is generated to visually compare the actual vs. 
predicted values, which helps in understanding the model's 
performance. 

4. Saving and Loading Models 

• The trained models are saved using the joblib library, which 
allows the models to be reloaded and reused without the need 
for retraining. This is particularly useful in scenarios where 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

Vol.15, Issue No 2, 2025 

 

 

 
 

848  

training a model is computationally expensive or time- 

consuming. 

• If a model already exists, it is loaded from the saved .pkl file, 
and predictions are made based on the test data. If the model 
doesn’t exist, it is trained, saved, and used for predictions. 

 

 

5. Testing with Sample Data 

• The code also includes functionality to test the models 

on a small sample of data. It selects 20 random samples 

from the dataset, saves them to a CSV file, and then 

loads this test data for prediction. 

• The Gradient Boosting Regressor is used to make 

predictions on this sample data, and the results are 

stored in the sample Data Frame for further analysis. 

6. Visualization and Metrics Calculation 

• For each model, after making predictions, various 

performance metrics (MAE, MSE, RMSE, and R² 

score) are calculated and displayed. These metrics 

provide insights into how well the model is performing 

and whether it is suitable for deployment in practical 

use cases. 

• The scatter plot of actual vs. predicted values is a 

critical visualization that helps identify potential issues 

such as overfitting or underfitting. The red dashed line 

represents a perfect prediction where actual values 

equal predicted values. 

Summary of Key Features: 

• Model Training and Evaluation: The code trains 

multiple regression models (Linear Regression, 

Random Forest, Gradient Boosting) and evaluates them 

on a test dataset. 

• Model Saving and Loading: It saves trained models to 

disk and can reload them for future predictions, 

avoiding the need for retraining each time. 

• Regression Metrics: After predictions, the code 

calculates and reports several regression evaluation 

metrics to assess model performance. 

• Visualization: A scatter plot provides a visual 

comparison of actual vs. predicted values, helping to 

evaluate the model’s accuracy. 

• Sample Testing: The code tests the models on a small 

set of random samples and makes predictions for 

further analysis. 

4.2 Dataset Description: 

The dataset used in the project contains sensor data collected from 

robotic systems to analyze failure mechanisms. The primary focus is 

on force and torque measurements, which play a crucial role in 

determining mechanical stress, collisions, and potential obstructions in 

robotic operations. The dataset is structured with multiple features 

representing various sensor readings, along with a target variable that 

categorizes different failure types. 

Key Attributes of the Dataset: 

1. Force and Torque Measurements: These numerical values 

represent physical parameters that indicate the load and 

strain experienced by the robotic system. Abnormal 

variations in these values often signal potential failures. 

2. Missing and Duplicate Values: Initial preprocessing steps 

check for missing and duplicate entries to ensure data 

quality and consistency. 

3. Feature Correlation: Correlation analysis is performed to 

understand relationships among different variables and to 

select the most significant features for model training. 

Dataset Preprocessing: 

• Cleaning and Transformation: The dataset undergoes 

preprocessing, including handling missing values, removing 

duplicates, and mapping categorical failure labels to 

numerical values. 

• Feature Selection: Only relevant sensor readings are 

retained for training the machine learning model. 

• Splitting Data: The dataset is divided into training (70%) 

and testing (30%) sets to evaluate model performance 

effectively. 

4.3 Result Description: 
 

Figure 4.3.1: Uploading a sample Dataset 

The figure 4.3.1 shows the uploading of a sample dataset including 

all columns. It provides snapshot of the raw data. The initial view 

helps to understand the structure and the types of information contain 

in the dataset. 
 

 

Figure 4.3.2: Heat map for column importance 

The figure 4.3.2 A heat map for column importance is a visual 

representation that highlights the significance of different features 

(columns) in a dataset. It helps in understanding which features 

contribute the most to a predictive model or a specific outcome. 
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Figure 4.3.3: Displaying the regression report of Random Forest 

model 

Figure 4.3.3 The image displays the performance metrics of a Random 

Forest Regressor used for predicting failure mechanisms in robotic 

systems. The Mean Absolute Error (MAE) of 8.03 indicates the 

average magnitude of errors in predictions. The Mean Squared Error 

(MSE) of 764.98 shows the squared average of prediction errors, 

highlighting how far off predictions are on average. The Root Mean 

Squared Error (RMSE) of 27.66 represents the standard deviation of 

residuals, giving a sense of how dispersed the errors are. The R² score 

of 0.78 suggests that the model explains 78% of the variance in the 

target variable, indicating good performance but with room for 

improvement. The model can be fine-tuned further using 

hyperparameter optimization or additional feature engineering for 

higher accuracy. 
 

 

 

Figure 4.3.4: Illustration of confusion matrix obtained using 

Random Forest model. 

The figure 4.3.4 A Confusion Matrix is a performance evaluation tool 

for classification models, including Random Forest. It helps in 

visualizing how well a model predicts different classes. 
 

 

Figure 4.3.5: Displaying the regression report of Gradient 

Boosting model. 

Figure 4.3.5 The image presents the performance metrics of a 

Gradient Boosting Regressor used for failure prediction in robotic 

systems. The Mean Absolute Error (MAE) of 10.08 indicates the 

average magnitude of prediction errors. The Mean Squared Error 

(MSE) of 738.71 represents the squared average of these errors, giving 

more weight to larger deviations. The Root Mean Squared Error 

(RMSE) of 27.18 shows the standard deviation of prediction errors, 

indicating how far predictions deviate from actual values. The R² score 

of 0.79 suggests that the model explains 79% of the variance in the 

target variable, showing good performance. While this model performs 

similarly to the Random Forest Regressor, it has a slightly lower MAE 

but a better R² score, indicating strong predictive capabilities. Further 

improvements could be achieved through hyperparameter tuning and 

incorporating additional features. 
 

Figure 4.3.6: Illustration of confusion matrix obtained by 

Gradient Boosting model. 

The figure 4.3.6 A confusion matrix is a tool used to evaluate the 

performance of a classification model, including Gradient Boosting 

Models (GBM). It visually compares the actual vs. predicted 

classifications and helps in understanding model errors. 
 

 

Figure 4.3.7: Displaying the regression report of Linear Regression 

model. 

Figure 4.3.7 The image displays the performance metrics of a Linear 

Regression model used in the project. The Mean Absolute Error 

(MAE) of 0.09 indicates an extremely low average error in predictions. 

The Mean Squared Error (MSE) of 0.01 and Root Mean Squared Error 

(RMSE) of 0.11 further confirm minimal deviation from actual values. 

The R² score of 1.00 suggests perfect alignment between predicted and 

actual values, implying that the model fully explains the variance in 

the dataset. However, such a high R² score raises concerns about 

potential overfitting, where the model may perform well on training 

data but struggle with new, unseen data. Further validation on different 

datasets is necessary to confirm its generalization ability. 
 

Model Name RMSE R2-Score 

Random Forest 27.66 0.78 

Gradient Boost 

Regressor 
27.18 0.75 

Linear Regression 0.11 1.00 

Figure 4.3.8: Comparison of all models 

The table 4.3.8 The model performance comparison shows that Linear 

Regression achieved the highest accuracy with an R²-score of 1.00 and 

an extremely low RMSE of 0.11, indicating a perfect fit to the data. 
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However, such a result might suggest overfitting or a specific dataset 

structure that favors linear models. Gradient Boosting Regressor 

performed slightly better than Random Forest, with an RMSE of 27.18 

compared to 27.66, but had a lower R²-score (0.75 vs. 0.78), meaning 

it explained slightly less variance in the data. 

5. CONCLUSION 

5.1 Conclusion 

The project highlights the significance of predictive maintenance and 

failure detection in robotic systems using advanced machine learning 

techniques. By leveraging models such as the Gradient Boosting 

Regressor (GBR) and other regression algorithms, this study develops 

a framework capable of predicting failure events, such as collisions or 

obstructions, based on sensor data like force and torque measurements. 

This predictive approach shifts robotic maintenance from a reactive 

strategy to a proactive one, reducing unexpected failures and 

improving overall system performance. One of the key findings of the 

project is the ability to predict failure mechanisms by analyzing sensor 

data and learning from historical failure cases. The model can 

anticipate potential failures before they occur, helping to minimize 

downtime and enhance the operational efficiency of robotic systems. 

Instead of waiting for a failure to happen, businesses can take 

preventive measures, ensuring that robotic operations remain smooth 

and uninterrupted. 

5.2 Future Scope 

The future scope of this project is vast and has the potential to drive 

significant advancements in robotic failure prediction and 

maintenance. One of the key areas for future development is the 

integration with real-time systems, where the current model could be 

deployed in active robotic environments to provide instant failure 

predictions. By continuously analyzing sensor data, robots could 

autonomously trigger safety protocols or halt operations to prevent 

damage, improving their responsiveness in critical applications. 

Additionally, enhancing model accuracy remains a crucial focus, as 

future work could involve fine-tuning hyperparameters, incorporating 

additional features, or leveraging advanced ensemble techniques such 

as XGBoost and LightGBM. These improvements would help capture 

more subtle failure patterns and improve predictive performance. 

Another promising direction is the incorporation of multi-modal data 

to develop a more holistic failure prediction framework. 
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